Services

v1.27

Sirenia

September 23, 2020

Services September 23,2020

Contents

1 Services 2
100 Mail .. e e 3
111 Send . . . e e e e e e 3

1.1.2 List . . . e e e e e 4

11.3 MailObject e e e 4

1.2 Serial port e e e e e 4
121 Sendingdata L e 5

1.2.2 Receivingdata 5

1.3 MeSSage qUeUE o v i v i e e e e e e e e e e 8
1.3.1 Publishingmessages. 9

1.3.2 ReceivingMeSSAZeS . .« . v v v i e e e e e e e e e e e e e e 9

1.3.3 Queueinspection e e e n

1.3.4 Queuemaintenance e e e e e 1

1.3.5 Messagedataandmetadata. oL 12

1.3.6 Supported props e e e e e e e e e e 12

A service module is like a built-in api module. But unlike api modules, service modules are config-
urable. For instance the mail service can be configured with the information necessary to connect to
mail servers. This means a flow that needs to send or receive emails does not need to contain mail
credentials and other sensitive information.

Services are accessed via the Serv-ice module. getting access to a mail service with the configured
key myMailis done as follows:

var m = Service. (’myMail’, Service.) s

Now the variable m holds a reference to a mail-service ready to use.

Services can usually also be used to set up flow triggers. In the mail service example, flows can be
triggered when emails are received from the mail server configured in the mail service.

1 Services

The following services are available:

« Mail
« Serial port
+ Message queue (MQ)

Sirenia 2

Services September 23,2020

1.1 Mail

The mail-service module has functionality to list and send mails.

1.1.1 Send

Sending a mail requires at least a list of recipients, a subject and a body and has optional support for
defining the from address, list of cc-addresses and attachments.

Arguments
Inacalllike send(to, subject, body, options) thearguments are as follows:

« tois a list of email-addresses which will receive the message

+ subject isthe subject of the mail

« body is the main text of the mail

« htmlisthe htmlbody if any

« optionsisan optional object which may contain the following properties
« fromthe sender address (default is "7manatee@sirenia.eu”)

« ccisallist of cc-addresses

« attachmentsisa list of files to attach (each item is a path to a file)

Examples

var m = Service. (’myMail’, Service.) £
// Simple send

m. ([’jonathan@sirenia.eu’], ’Hello from a bot’, ’Manatee says hello’).

// With all options

var task = m. (
[’jonathan@sirenia.eu’],
’Hello from a bot’,
’Manatee says hello’,

{
>from’: ’bot@somewhere.com’,
’cc’: [’martin@sirenia.eu’, ’los@sirenia.eu’, ’lykke@sirenia.eu’],
’attachments’: [’C:/Users/SomeUser/SomeFile.txt’]
}
). (10000) 3

Sirenia 3

(1

Services September 23,2020

1.1.2 List

List is used to list mails in a given mail-box. The return value is a list of mail objects.

Arguments

« mailbox isthe mailbox to list (default is the INBOX)

Examples

// List mails in 1inbox
var inbox = m. O
var mailsElsewhere = m. (’someothermailbox’) s

1.1.3 Mail Object

The mail object returned from list has the following properties:

 1idid of the mail

« to list of recipients

+ cc list of cc-addresses

« fromsender address

« subject subject

« body mail text

o html html mail body if any

« read whether or not the mail is read/unread (property is writeable)
« attachments a list of attachments

And the following methods:

+ delete(mailbox) to delete the mail from the given mailbox (default is INBOX)

« move(to, from) to movethe mail between two mailboxes

« writeAttachmentsToD1sk to write the attachments to disk (access them then viathe at-
tachments property)

1.2 Serial port

The serial port service module lets flows and triggers communicate via serial ports on the local ma-
chine.

Sirenia 4

Services September 23,2020

Data can be sent and received as either binary data or text. Receiving data can be done synchronously
or asynchronously as shown in the examples below.

1.2.1 Sending data

Sending data is simple - obtain the service and give it a string or an array of bytes (numbers) to send.
Sending is always synchronous (returns after data has been sent):

var myDevice = Service. (’my-device’, Service.) 8
// Send text

myDevice. (’scan barcode, please’);

// Send binary data

myDevice. ([0x09, OXx0A, OxOB, 0x0C])s

1.2.2 Receiving data

All methods for receiving data come in synchronous and asynchronous forms such as receiveOne
and receiveOneAsync. They also all accept as their last argument an options object which can
have the following properties: - timeout is an optional override of how long to wait for data to arrive
in milliseconds. The default is 3000. - binary is an optional override of the format in which the data
is returned. true means a byte array is returned, false means a text string is returned. Receiving
data as text requires the device to encode text by the same encoding configured in the serial port
service. The defaultis false.

Request / reply

As a convenience for the common task of sending a request and receiving a reply, two requestRe-
ply methods are available.

var myDevice = Service. (’my-device’, Service.) 8

// Send and receive text synchronously. Here we override the default receive tim
var barcodeText = myDevice. (’scan barcode, please’, { timeout: 10000
// When binary data is sent, the data received 1is also binary data by default -
var replyBytes = myDevice. ([0x09, Ox0A, OxO0B, 0x0C])s

The asynchronous form returns a task object. The task object behaves the same as the tasks used in
the Http and Task modules.

Sirenia 5

Services September 23,2020

var task = myDevice. (’scan barcode, please’)s
// ... Do other things while we wait for the response...

task. Os

var barcodeText = task. s

Receive one message

If we expect to receive a data message from the device, we can receive it like so:

var messageText = myDevice. O
// ... or as undecoded bytes
var messageBytes = myDevice. ({ binarys: true });

The asynchronous form offers no surprises:

var task = myDevice. O

// ... Do other things while we wait for the message...
task. Os

var messageText = task. H

Receive multiple messages

Sometimes we expect a device to send multiple messages. If we use receiveOne, thereis arisk that
a message arrives between invocations and is lost. To address this situation, we can use receive-
Many. Its syntax is slightly more complex as we must provide the receiveMany method with a
callback which will be called for each received message.

The callback must return true while more messages are expected. This means when we receive what
we know to be the last message, we can return false and receiveMany will return control to the
flow immediately without waiting for the timeout to elapse.

Note that Api methods that show dialogs (for instance Dialog. input or Debug.showDialog)
are not supported within the callback. Use the callback to collect the messages - parsing only enough
to determine the return value of the callback.

var receivedMessages = []3

// Listen for messages until the default timeout elapses and put them in the

myDevice. (function(message) {
receivedMessages. (message) s
return true;

bs

Sirenia 6

arr

Services September 23,2020

// Listen for messages until the ’BYEBYE’ message is received (or until the time

myDev-ice. (function(message) {
receivedMessages. (message) s
return message !== ’'BYEBYE’j

b3

This method also has an asynchronous form to enable parallel processing:

var receivedMessages = [];
// Listen for messages until the default timeout elapses and put them in the arr

var task = myDevice. (function(message) {
receivedMessages. (message) ;
return true;
1)s
// ... do something else while messages are received
task. Os

// Now we can process the messages in the ’receivedMessages’ array.

Latest inbound messages

This service module keeps track of the most recent messages received from the device. This can be
useful if a flow is triggered by the reception of a message and the flow needs to inspect the messages
preceding the triggering message. Note that messages are only added to this collection while a receive
operation is active on the serial port. An active serial port trigger will cause messages to be added. A
flow with a long running receive operation likewise.

The history is returned as an array of entry objects with the following properties: - time is a Date
object indicating when the message was received - data is a string or an array of bytes depending on
the optional binary option

var history = myDevice. Os
if (history. > 0) {

var lastEntry = history[history. = d]lg

// ... do something with the last received entry
}

// Get binary data in stead
history = myDevice. ({ binary: true });

Sirenia 7

Services September 23,2020

Open / close port

The methods for sending and receiving data will open the port automatically and close it again when
they are done. This means it isn’t strictly necessary to excplicitly open and close the port. If for any
reason it is undesirable for the port to only be open while itis in use, you can open and close the port
excplicitly from your flow:

myDevice. O
// ... communicate with device
myDevice. Os

Note that manatee manages the state of the physical serial port intelligently. A serial port trigger and
a flow can use the same serial port service at the same time. This means that calling .open() and
.close () may not have a direct effect on the physical port if a trigger is already keeping the port
open in order to listen for triggering messages. The open and close methods merely express intent
to use the port for more than one operation. As such they guarantee that the port will not automat-
ically close between separate operations. Excplicitly closing the port isn’t a strict requirement as it
will happen automatically when the flow has completed.

Byte / string conversions

The serial port service module exposes the means to convert back and forth between byte arrays and
their string representation under the encoding configured on the serial port service in cuesta.

// myDevice service uses us-ascii

var text = ’abc’y

var bytes = [Ox61, 0x62, 0x63]

var decodedText = myDevice. (bytes)s
var encodedBytes = myDevice. (text)

// text and decodedText are now the same
// bytes and encodedBytes are now the same

1.3 Message queue
The message queue service module enables triggers to communicate via message queue messages.
It also enables flows to send and receive such messages.

Interacting with a message queue from a flow requires obtaining a preconfigured mq service instance
and getting a live connection from it:

Sirenia 8

Services September 23,2020

var mgConn = Service. (’my-mg’, Service.MQ). Os

For this code to work, an mq service must exist with the key my-mq

1.3.1 Publishing messages

Publishing a message can be as simple as the following example:

mgConn. (’amqg.direct’, ’myQueue’, ’The message body often consists of js

This simple example specifies an mqg exchange (amq.direct), a routing key (myBinding) and a
message body. To receive this message, an mq client would need to have bound a queue to the
amq.d1irect exchange with the routing key myBinding.

Props and headers

In some cases, we need to add some meta data to a message. An example could be RPC style commu-
nication (Remote Procedure Call), where we request a server to carry out a task and report back when
it’s finished. This usually requires specifying a correlation id and a reply address.

var props = {
correlationld: ’correlationl23’,
replyTo: ’weatherReplies’,
headers: {
>CUSTOM-HEADER’: ’Some header value’
}
}3

mgConn. (’amqg.direct’, ’weatherRequests’, ’How is the weather over there

The reply to this message could subsequently be received by receiving messages from a queue bound
to the amq.d1irect exchange with the routing key weatherReplies. To verify that the reply is
indeed a reply to this specific message, the correlation id can be used.

1.3.2 Receiving messages

Consuming messages from a queue can be done either one message at the time, or several at the time.
Both methods support both synchronous and asynchronous operation.

receiveOne takes just one message off the queue and returns it synchronously (or waits in vain and
returns null):

Sirenia 9

Services September 23,2020

var message = mqConn. ({ timeout: 5000 });
if (message) {

message. Os

Debug. (’Received message ’ + message. + ’ with headers ’ + JSO
} else {

Debug. (’Didn\’t receive anything before timeout’)}

}

The default waiting time is 3000 ms, but can be changed by passing a suitable settings object.

receiveOneAsync does the same, but allows the flow to do other things while waiting for the message

to arrive:
var task = mgConn. ({ timeout: 200 });
// .. do other things here 1in parallel with the message reception
task. O
if (task.) {
var message = task. H
message. ()
Debug. (’Received message ’ + message.)
} else {
Debug. (’Didn\’t receive anything before timeout’)}
}

receiveMany takes messages off the queue until the callback it is provided returns false or until
the timeout elapses, whichever comes first. Note that only one unacknowledged message can be
received at the time. So in order to receive message number two, message number one must first be
acknowledged (by callingmessage.ack(),message.nack() ormessage.respond(..)).

var messages = []3

function (message) {
message. s
messages. (message) s
return messages. < 2%
}
mgConn. (handleMessage, { timeout: 10000 });
if (messages. > 0) {
Debug. (’Received messages ’ + messages. (function(m) { return m.
} else {
Debug. (’Didn\’t receive anything before timeout’)}

Sirenia 10

Services September 23,2020

}

The above example waits ten seconds for two messages to be taken off the queue. As they are taken
off the queue they are added to an array for later inspection. The callback signals with its return value
when it has received enough messages.

receiveManyAsync does the same, but allows the flow to continue work while waiting for the message
reception to complete.

var messages = []3

function (message) {

message. Os

messages. (message) s

return messages. < 23
}
var task = mgConn. (handleMessage, { timeout: 10000 });
// .. do other things here 1in parallel with the message reception
task. s
if (messages. > 0) {

Debug. (’Received messages ’ + messages. (function(m) { return m.
} else {

Debug. (’Didn\’t receive anything before timeout’)j
}

1.3.3 Queue inspection

The connection object seen in the examples above further has the properties messageCount and
consumerCount:

var messageCount = mqgConn.

we

var consumerCount = mqgConn. H

These may be used to verify the correctness of the queue infrastructure configuration or similar tasks.

1.3.4 Queue maintenance

When taking messages off a queue as in the above examples, a message object is obtained. It has the
following methods:

+ messsage.ack() consumes the message from the message queue

Sirenia 1

Services September 23,2020

« message.nack() returns the message to the message queue. Note that this means your flow
will be able to continue receiving this same message over and over. This can be useful if there
are other subscribers to the queue, who are better suited to handling the message.

+ message.respond(’response text’) sends a response. This will only work if the original mes-
sage came with a reply_to property. Correlation id (if there is one) is also transferred when
this method is used. Sending a response will automatically ack the message, if this hasn’t al-
ready been done.

The message queue client in manatee is set up to only allow one unacknowledged message at the
time. This means you cannot receive more messages until you have called ack (), nack() or re-
spond (. .) ontheonesyou have previously received.

1.3.5 Message data and metadata

The message object provides access to the contents of the message through the following members:

+ message.body The body of the message in the form of a string

+ message.props.headers The headersin the form of an object where properties and their values
corresponds to headers in the message

+ message.props.replyTo Retrieves a message property value. Returns nullif the message didn’t
have that property. See the list of valid property names below for more supported props.

1.3.6 Supported props

The message properties that should be specified when publishing messages depend on the situation.
Occasionally, the recipient of the message has some required properties in order to be able to process
a message.

The supported properties when publishing messages are as follows:

String properties - appld - clusterld - contentEncoding - contentType - correlationld - expiration -
messageld - replyTo - type - userld

Numeric properties - deliveryMode - priority

Boolean properties - persistent

Sirenia 12

	Services
	Mail
	Send
	List
	Mail Object

	Serial port
	Sending data
	Receiving data

	Message queue
	Publishing messages
	Receiving messages
	Queue inspection
	Queue maintenance
	Message data and metadata
	Supported props

